ana(n-1)/[a(n-1)-an]=ana(n+1)/[an-a(n+1)]
[a(n-1)-an]/[ana(n-1)]=[an-a(n+1)]/[ana(n+1)]
1/an -1/a(n-1)=1/a(n+1)-1/an
数列{1/an}是等差数列.
1/a1=1/2 1/a2=1/1=1
d=1/a2-1/a1=1-1/2=1/2
数列{1/an}是以1/2为首项,1/2为公差的等差数列.
1/an=1/2+(1/2)(n-1)=n/2
an=2/n
a100=2/100=1/50