S10=10a1+10*(10-1)*d/2
=10(a2-d)+45d
=10(5-d)+45d
=50+35d
=120
d=2
An=A2+(n-2)d=5+(n-2)*2=2n+1
Sn=na1+n(n-1)*d/2
=n(5-2)+n(n-1)
=n^2+2n
2)
1/Sn=1/[n(n+2)]=(1/2)[1/n-1/(n+2)]
Tn=(1/2)[(1+1/2+1/3+...+1/n)-(1/3+1/4+...+1/n)-1/(n+1)-1/(n+2)]
=(1/2)[1+1/2-1/(n+1)-1/(n+2)]