解
f(x)=a*b
=√3cosxsinx-1/2cos2x
=√3/2sin2x-1/2cos2x
=sin(2x-π/6)
最小正周期为;
T=2π/2=π
∵x∈[0,π/2]
∴2x-π/6∈[-π/6,5π/6]
∴
当2x-π/6=-π/6时
f(x)取得最小值,f(x)=-1
当2x-π/6=π/2时
f(x)取得最大值,f(x)=1
解
f(x)=a*b
=√3cosxsinx-1/2cos2x
=√3/2sin2x-1/2cos2x
=sin(2x-π/6)
最小正周期为;
T=2π/2=π
∵x∈[0,π/2]
∴2x-π/6∈[-π/6,5π/6]
∴
当2x-π/6=-π/6时
f(x)取得最小值,f(x)=-1
当2x-π/6=π/2时
f(x)取得最大值,f(x)=1