1)将x=2及f(2)=3代入已知条件有:f[f(2)-4+2]=3-4+2即f(1)=1.
令x=0,则f[f(0)-0+0]=f(0)-0+0=f(0)=a,即f[f(0)]=f(a)=a
(2)对任意实数x,由题意均有f[f(x)-x^2+x]=f(x)-x^2+x成立.而f(x)-x^2+x恒等于f(x)-x^2+x,所以
f(x)-x^2+x=m,即f(x)=x^2-x+m
令f(x)=x解得x1=0,x2=1
所以f(x)的解析式为f(x)=x^2-x 或者f(x)=x^2-x+1
1)将x=2及f(2)=3代入已知条件有:f[f(2)-4+2]=3-4+2即f(1)=1.
令x=0,则f[f(0)-0+0]=f(0)-0+0=f(0)=a,即f[f(0)]=f(a)=a
(2)对任意实数x,由题意均有f[f(x)-x^2+x]=f(x)-x^2+x成立.而f(x)-x^2+x恒等于f(x)-x^2+x,所以
f(x)-x^2+x=m,即f(x)=x^2-x+m
令f(x)=x解得x1=0,x2=1
所以f(x)的解析式为f(x)=x^2-x 或者f(x)=x^2-x+1