D
分析:直角△ABC与直角△ABD有公共边AB,若设AB=x,则在直角△ABC与直角△ABD就满足解直角三角形的条件,可以用x表示出BC与BD的长,根据BD-BC=CD,即可列方程求解.
设AB=x米,在直角△ACB中,∠ACB=45°,
∴BC=AB=x米.
在直角△ABD中,∠D=30°,tan∠D="AB/" BD ,
∴BD="AB/" tan30° =
x.
∵BD-BC=CD
∴
x-x=100
解得:x=50(
+1).
故选D.
<>
D
分析:直角△ABC与直角△ABD有公共边AB,若设AB=x,则在直角△ABC与直角△ABD就满足解直角三角形的条件,可以用x表示出BC与BD的长,根据BD-BC=CD,即可列方程求解.
设AB=x米,在直角△ACB中,∠ACB=45°,
∴BC=AB=x米.
在直角△ABD中,∠D=30°,tan∠D="AB/" BD ,
∴BD="AB/" tan30° =
x.
∵BD-BC=CD
∴
x-x=100
解得:x=50(
+1).
故选D.
<>