d(sinxy-2z+e^z)=0
dsinxy-d2z+de^z=0
ycosxydx+xcosxydy-2dz+e^zdz=0
ycosxydx+xcosxydy=2dz-e^zdz=(2-e^z)dz
dz=ycosxy/(2-e^z)dx+xcosxy/(2-e^z)dy
所以
偏z/偏x=ycosxy/(2-e^z)
偏z/偏y=xcosxy/(2-e^z)
d(sinxy-2z+e^z)=0
dsinxy-d2z+de^z=0
ycosxydx+xcosxydy-2dz+e^zdz=0
ycosxydx+xcosxydy=2dz-e^zdz=(2-e^z)dz
dz=ycosxy/(2-e^z)dx+xcosxy/(2-e^z)dy
所以
偏z/偏x=ycosxy/(2-e^z)
偏z/偏y=xcosxy/(2-e^z)