x^2+y^2-4x=0
(x-2)^2+y^2=4
圆心(2,0)
抛物线焦点(2,0) p/2=2 p=4
y^2=2px
y^2=8x
AB+CD=AD-BC BC=2R=2*2=4
其中BC是圆的直径.
直线:y=2(x-2) y=2x-4 tana=2 tan^2a=4 sec^2a=5 cosa=根5/5 sina=2根5/5
设直线参数方程:
y=2根5/5 *t
x=2+根5/5 *t
其中t是点(2,0)到直线上一点(x,y)的距离(有正负)
将参数方程代入y^2=8x
4/5t^2=16+8根5/5t
4t^2-8根5t-80=0
t^2-2根5 *t-20=0
t1+t2=2根5
t1t2=-20
则:AD^2=|t1-t2|^2=|t1+t2|^2-4t1t2=4*5-(4*(-20))=100
AD=10
则:AB+CD=10 - 4=6