两种方法:
1.【最通常的方法】
因为,
x²+y²+6x-4=0
x²+y²+6y-28=0
有两式相减可得两圆交线:y=x+4
代入得x²+7x+6=0
所以,两圆交点横坐标为x1=-1,x2=-6
所以,两圆交点(-1,3),(-6,-2)
所以,解得垂直平分线方程为y=-x-3
与x-y-4=0联立得
圆心为(1/2,-7/2)
半径为r=√[(1/2+1)²+(-7/2-3)²]=√178/2
所以,(x-1/2)²+(y+7/2)²=178/4
即x²+y²-x+7y-32=0
2【高级点的方法】
经过两圆x²+y²+6x-4=0和x²+y²+6y-28=0的圆系方程为
x²+y²+6x-4+λ(x²+y²+6y-28)=0(不包括x²+y²+6y-28=0)
整理得到(1+λ)x²+(1+λ)y²+6x+6λy-4-28λ=0
圆心坐标为(-3/(1+λ),-3λ/(1+λ))
所以,圆心在直线x-y-4=0
即-3/(1+λ)+3λ/(1+λ)-4=0
λ=-7
所以,代入圆系方程x²+y²-x+7y-32=0
补充:
【解一】
将3x-y-6=0代入圆方程C:x²+y²-2x-4y=0
得x²-5x+6=0
所以,x1=2,x2=3
所以|P1P2|=√(1²+3²)*|3-2|=√10
【解二】
(x-1)²+(y-2)²=5,半径r=√5
直线是3x-y-6=0
圆心与直线距离d=|3*1-1*2-6|/√(3²+1²)=√10/2
弦长AB=2√(r²-d²)=√10
【不好意思,今天外出打工,现在才看到题】