(1)Sn=4an-1+3
Sn-1=4an-2+3
两式相减得an=4a(n-1)-4a(n-2),等式两边同时减去2a(n-1),得
an-2a(n-1)=2[a(n-1)-2a(n-2)],即c(n-1)=2c(n-2),所以{cn}为等比数列
(2)c1=4,q-2,所以cn=2^(n+1)
(3)因为cn=a(n+1)-2an=2^(n+1),等式同时除以2^(n+1),得
a(n+1)/2^(n+1)-an/2^n=1,即b(n+1)-bn=1
所以bn是等差数列,b1=1/2,d=1所以bn=n-(1/2)
(4)an=bn*(2^n)其中bn是等差数列,2^n是等比数列,两者相乘求和用错位相减法即可