解题思路:(1)首先过D作DF⊥BA,垂足为F,再根据条件AB+BC=2BE可得AB+EC=BE,再证明Rt△BFD≌Rt△BED,可得FB=BE,即AB+AF=BE,进而得到AF=EC,然后再证明△AFD≌△CED可得∠DCE=∠FAD,再根据∠BAD+∠FAD=180°,可得∠BAD+∠BCD=180°;
(2)过D作DF⊥BA,垂足为F,首先证明∠DCE=∠FAD,再证明△AFD≌△CED,可得AF=EC,然后证明Rt△BFD≌Rt△BED可得FB=BE,再根据线段的和差关系可得AB+BC=2BE.
(1)证明:过D作DF⊥BA,垂足为F,
∵AB+BC=2BE,
∴AB=BE+BE-BC,
AB=BE+BE-BE-EC,
AB=BE-EC,
AB+EC=BE,
∵BD为∠ABC的平分线,DE⊥BC,DF⊥BA,
∴DF=DE,
在Rt△BFD和Rt△BED中
DB=DB
DF=DE,
∴Rt△BFD≌Rt△BED(HL),
∴FB=BE,
∴AB+AF=BE,
又∵AB+EC=BE,
∴AF=EC,
在△AFD和△CED中
AF=EC
∠DFA=∠DEC=90°
DF=DE,
∴△AFD≌△CED(SAS),
∴∠DCE=∠FAD,
∵∠BAD+∠FAD=180°,
∴∠BAD+∠BCD=180°;
(2) 可以互换,结论仍然成立.理由如下:
过D作DF⊥BA,垂足为F,
∵∠BAD+∠FAD=180°,∠BAD+∠BCD=180°
∴∠DCE=∠FAD,
∵BD为∠ABC的平分线,DE⊥BC,DF⊥BA,
∴DF=DE,
在△AFD和△CED中
DF=DE
∠FAD=∠ECD
∠DFA=∠DEC=90°,
∴△AFD≌△CED(AAS),
∴AF=EC,
在Rt△BFD和Rt△BED中
DB=DB
DF=DE,
∴Rt△BFD≌Rt△BED(HL),
∴FB=BE,
∴AB+AF=BE,
AB=BE-AF=BE-EC=BE-(BC-BE)=BE-BC+BE=2BE-BC,
即:AB+BC=2BE.
点评:
本题考点: 角平分线的性质;全等三角形的判定与性质.
考点点评: 此题主要考查了角平分线的性质,以及全等三角形的判定与性质,关键是熟练掌握角平分线上的点到线段两端点的距离相等.