x->0时,cosx=1-x²/2!+x^4/24+o(x^4),e^{-x²/2}=1-x²/2+(-x²/2)²/2!+o(x^4)=1-x²/2+x²/8+o(x^4)
所以cosx-e^{-x²/2}=-x^4/12+o(x^4)~-x^4/12
ln(1-x)=-x+x²/2+o(x²),所以x²[x+ln(1-x)]=x²[x²/2+o(x²)]~x^4/2
原式=lim{x->0}[-x^4/12]/[x^4/2]=-1/6
x->0时,cosx=1-x²/2!+x^4/24+o(x^4),e^{-x²/2}=1-x²/2+(-x²/2)²/2!+o(x^4)=1-x²/2+x²/8+o(x^4)
所以cosx-e^{-x²/2}=-x^4/12+o(x^4)~-x^4/12
ln(1-x)=-x+x²/2+o(x²),所以x²[x+ln(1-x)]=x²[x²/2+o(x²)]~x^4/2
原式=lim{x->0}[-x^4/12]/[x^4/2]=-1/6