∵∠DHB=∠CHG,∠CHG+∠GCH=90,∠GCH+CED=90
∴∠DHB=∠CHG==∠CED
又∵△ABC中,∠ACB=90°AC=BC,CD⊥AB
∴CD=BD
∴ △CED≌△BHD
∴DH=DE,∠ECD=∠HBD=∠ACE (CE平分∠ACD)
过E作EM⊥AC于M
∵CE平分∠ACD
∴ EM=ED,而AE=√2EM
∴AE=√2DH
由∠HBD=∠ACE,∠A=∠A,知道△ACE∽△ABF
∴AF/AE=AB/AC=√2
∴AF=√2AE=√2(√2DH)=2DH
∵∠DHB=∠CHG,∠CHG+∠GCH=90,∠GCH+CED=90
∴∠DHB=∠CHG==∠CED
又∵△ABC中,∠ACB=90°AC=BC,CD⊥AB
∴CD=BD
∴ △CED≌△BHD
∴DH=DE,∠ECD=∠HBD=∠ACE (CE平分∠ACD)
过E作EM⊥AC于M
∵CE平分∠ACD
∴ EM=ED,而AE=√2EM
∴AE=√2DH
由∠HBD=∠ACE,∠A=∠A,知道△ACE∽△ABF
∴AF/AE=AB/AC=√2
∴AF=√2AE=√2(√2DH)=2DH