关于线性代数的一道题目,已知四元非齐次线性方程组AX=b,A的秩 R(A)=3,η1,η2,η3是它的三个解向量,其中

2个回答

  • 由于 R(A)=3,则AX=b的解空间是1维的(4-3=1).因此,只要找到方程组对应的齐次方程组AX=0的一个解向量和AX=b的一个特解即可.由η1+η2 =[1,2,0,2]',η2+η3=[1,0,1,3]',得η1-η3=[0,2,-1,-1]'为对应齐次方程组的一个解向量.而(η1+η2)/2=[0.5,1,0,1]为AX=b的一个特解.从而方程组的一个通解为[0.5,1,0,1]'+k[0,2,-1,-1]',其中k属于数域K.