函数f(x)=ax²+b|x|+c (a不等于0)在其定义域R内有四个单调区间,则实数a,b,c满足?
1个回答
函数f(x)的图形是将Y轴的右边翻折到左边得到的
所以图形要有4个单调区间,在Y轴的右边必须有2个单调区间
即Y轴的右边的图形必须有一条对称轴
也就是-b/2a>0
相关问题
函数f(x)=ax2+b|x|+c(a≠0),其定义域R分成了四个单调区间,则实数a,b,c满足( )
若函数f(x)=|ax2+bx+c|(a不等于0)的定义域R分为四个单调区间,则实数a,b,c应满足的条件是
设a,b,c∈R,有下列命题:①若a>0,则f(x)=ax+b在R上是单调函数;②若f(x)=ax+b在R上是单调函数,
4.如果函数f(x)在区间(a,b)内恒有 ,则在该区间内函数f(x) ( ) A.单调增加 B.单调减小 C.凹 D.
已知函数f(x)=x3+ax2+bx+c(a,b,c∈R),若函数f(x)在区间[-1,0]上是单调减函数,则a2+b2
函数f(x)的定义域为D,若存在闭区间[a,b]⊆D,使得函数f(x)满足:①f(x)在[a,b]内是单调函数;②f(x
实数a,b,c是图像连续不断的函数f(x)定义域中的三个数,且满足a<b<c,f(a)f(b)<0,f(b)f(c)<0
定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=f(b)−f(a)b−
定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=f(b)−f(a)b−
设函数f(x)=x2+(b+2)x+c(b,c∈R)在区间(0,1)上不单调,则b的取值范围是______.