用分离变量法可避开分类讨论的麻烦:
显然,θ=π/2时,不等式恒成立.
当θ∈[0,π/2)时,不妨设sinθ=t,则
t∈[0,1),(cosθ)^2=1-t2,
于是,原式化为
1-t2+2mt-2m-2(-1/2)[(1-t)+2/(1-t)]+1.
由于对勾函数f(x)=x+(2/x)在x∈(0,√2]单调递减,
且0(-1/2)[(1-t)+2/(1-t)]+1恒成立,
∴m取值范围是m>-1/2,即m∈(-1/2,+∞).
用分离变量法可避开分类讨论的麻烦:
显然,θ=π/2时,不等式恒成立.
当θ∈[0,π/2)时,不妨设sinθ=t,则
t∈[0,1),(cosθ)^2=1-t2,
于是,原式化为
1-t2+2mt-2m-2(-1/2)[(1-t)+2/(1-t)]+1.
由于对勾函数f(x)=x+(2/x)在x∈(0,√2]单调递减,
且0(-1/2)[(1-t)+2/(1-t)]+1恒成立,
∴m取值范围是m>-1/2,即m∈(-1/2,+∞).