A,B,C成等差数列,故3B=180°,得B=60°,A+C=120°
1、由正弦定理得
b^2=a^2+c^2-2accosB
故有
13=9+c^2-2*3*c*cos60°=9+c^2-3c
c^2-3c-4=0
(c-4)(c+1)=0
解得c=4(c=-1舍去)
2、t=sinAsinC=1/2*[cos(A-C)-cos(A+C)]=1/2*[cos(A-C)-cos120°]
=1/2*cos(A-C)+1/4
故当且仅当A=C=60°时,t取最大值
1/2*1+1/4=3/4
A,B,C成等差数列,故3B=180°,得B=60°,A+C=120°
1、由正弦定理得
b^2=a^2+c^2-2accosB
故有
13=9+c^2-2*3*c*cos60°=9+c^2-3c
c^2-3c-4=0
(c-4)(c+1)=0
解得c=4(c=-1舍去)
2、t=sinAsinC=1/2*[cos(A-C)-cos(A+C)]=1/2*[cos(A-C)-cos120°]
=1/2*cos(A-C)+1/4
故当且仅当A=C=60°时,t取最大值
1/2*1+1/4=3/4