原式=lim(x->1)(3x²-3)/(3x²-5)
=(3-3)/(3-5)
=0
(4)原式=lim(x->+∞)(2lnx·1/x)/1
=lim(x->+∞)2lnx/x
=lim(x->+∞)(2/x)/1
=0
(6)原式=lim(x->0)(1-1/(x+1))/2x
=lim(x->0)(x/(x+1))/2x
=lim(x->0)(1/(x+1))/2
=1/2
原式=lim(x->1)(3x²-3)/(3x²-5)
=(3-3)/(3-5)
=0
(4)原式=lim(x->+∞)(2lnx·1/x)/1
=lim(x->+∞)2lnx/x
=lim(x->+∞)(2/x)/1
=0
(6)原式=lim(x->0)(1-1/(x+1))/2x
=lim(x->0)(x/(x+1))/2x
=lim(x->0)(1/(x+1))/2
=1/2