证明:要证(1-2sinθcosθ)/(cos2θ-sin2θ)=(cos2θ-sin2θ)/(1+2sinθcosθ)成立只需证(1-2sinθcosθ)(1+2sinθcosθ)=(cos2θ-sin2θ)²成立;而(1-2sinθcosθ)(1+2sinθcosθ)=1-(2sinθcosθ)²=1...
:求证:(1-2sinθcosθ)/(cos2θ-sin2θ)=(cos2θ-sin2θ)/(1+2sinθcosθ).
2个回答
相关问题
-
求证:(1+cosθ+cosθ/2) /(sinθ+sinθ/2)=sinθ/1-cosθ
-
sin^2θ/sinθ-cosθ + cosθ/1-tanθ = sin^2θ/sinθ-cosθ + cosθ/1-(
-
求证 (sinθ+cosθ-1)(sinθ-cosθ+1)) /sin2θ=tanθ/2
-
求证sinθ/(1+cosθ)+(1+cosθ)/sinθ=2/sinθ
-
求证:sin2θ+sinθ/2cos2θ+2sin^2θ+cosθ=tanθ
-
求证1+sin2θ -cos2θ/1+sinθ +cos2θ =tgθ
-
2sinθ-cosθ=1 (sinθ+cosθ+1)/(sinθ-cosθ+1)
-
(1+sinθ+cosθ)/(sin θ/2+cosθ/2)
-
求证:(1-tanθ)/(1+tanθ)=(1-2sinθcosθ)/(cos2θ-sin2θ)
-
求证:2(cos θ -sin θ )/(1+sinθ +cosθ)=tan(∏/4- θ /2)-tan(θ /2)