(1)抛物线的焦点为(p/2,0),设直线方程为 x=my+p/2 ,
代入抛物线方程得 y^2=2p(my+p/2) ,
化简得 y^2-2pmy-p^2=0 ,
因为 y1、y2 是方程的两个根 ,
因此,由二次方程根与系数的关系可得 y1*y2= -p^2 ,
所以 x1*x2= y1^2/(2p)*y2^2/(2p)=(y1*y2)^2/(4p^2)=p^4/(4p^2)=p^2/4 .
(2)由于 |AB|^2=(x2-x1)^2+(y2-y1)^2=(m^2+1)*(y2-y1)^2=(m^2+1)*[(y1+y2)^2-4y1*y2]
=(m^2+1)*[(2pm)^2-4*(-p^2)]=4p^2*(m^2+1)^2 ,
因此,当 m=0 时,|AB| 最小 ,为 √(4p^2)=2p .