1.∵PA切⊙O于A,∴∠PAC=90°
∵sin∠APC=5/13=AC/OP=AC/3,∴AC=3×5/13=15/13
∴⊙O的半径为15/13
2.∵∠OAC+∠AOC=90°=∠AOC+∠APC,∴∠OAC=∠APC
∴sin∠OAC=sin∠APC=5/13,
∴sin∠OAC=5/13=OC/AO=CO/(15/13),
∴CO=75/169
∴AB=2AC=2√[(AO)²-(CO)²]=2√[(15/13)²-(75/169)]=360/169
1.∵PA切⊙O于A,∴∠PAC=90°
∵sin∠APC=5/13=AC/OP=AC/3,∴AC=3×5/13=15/13
∴⊙O的半径为15/13
2.∵∠OAC+∠AOC=90°=∠AOC+∠APC,∴∠OAC=∠APC
∴sin∠OAC=sin∠APC=5/13,
∴sin∠OAC=5/13=OC/AO=CO/(15/13),
∴CO=75/169
∴AB=2AC=2√[(AO)²-(CO)²]=2√[(15/13)²-(75/169)]=360/169