设与L1L2的交点分别为(1+m,1,1+m) (2+n,1+n,-3-3n)
则A(2,-1,2)B(1+m,1,1+m) C(2+n,1+n,-3-3n)三点共线
由向量AB和向量AC共线,
即(m-1,2,m-1)和(n,n+2,-3n-3)共线
解得n=-3n-3 ,n=-3/4
进而得直线的方向向量为(3,5,3)
直线的点法式方程为:(x-2)/3=(x+1)/5=(x-2)/3
m,n是参数 可以参见空间直线的参数方程
或者令(x-1)/1=(y-1)/0=(z-1)/1=m即可导出