不是换底公式
要证1/log(a)(b)=log(b)(a)
只需证 [log(b)(a)]*[log(a)(b)]=1
证明用 换底公式
[log(b)(a)]*[log(a)(b)]=lgb/lga*lga/lgb=1
所以1/log(a)(b)=log(b)(a)
不是换底公式
要证1/log(a)(b)=log(b)(a)
只需证 [log(b)(a)]*[log(a)(b)]=1
证明用 换底公式
[log(b)(a)]*[log(a)(b)]=lgb/lga*lga/lgb=1
所以1/log(a)(b)=log(b)(a)