y^2=12x y=3x+m
那么(3x+m)²=12x
9x²+6mx+m²-12x=0
9x²+6*(m-2)*x+m²=0 方程组有两个相同的实数解
即上式的判别式等于0,所以【6*(m-2)】²-4*9*m²=0
36*(m-2)²-36m²=0
36*(m²-4m+4)-36m²=0
-144m+144=0
m=1
所以原方程组为:y²=12x y=3x+1
(3x+1)²=12x
9x²+6x+1=12x
9x²-6x+1=0
(3x-1)²=0
所以x1=x2=1/3,那么y1=y2=2
所以这个方程组的解为:x1=x2=1/3、y1=y2=2