观察算式: 1 1×2 =1- 1 2 = 1 2 , 1 1×2 + 1 2×3 =1- 1 2 + 1 2 - 1

1个回答

  • 1

    1×2 =1-

    1

    2 ,

    1

    1×2 +

    1

    2×3 =1-

    1

    2 +

    1

    2 -

    1

    3 ,

    1

    1×2 +

    1

    2×3 +

    1

    3×4 +

    1

    4×5 =1-

    1

    2 +

    1

    2 -

    1

    3 +

    1

    3 -

    1

    4 +

    1

    4 -

    1

    5 =1-

    1

    5 =

    4

    5 ;

    1

    1×2 +

    1

    2×3 +

    1

    3×4 +

    1

    4×5 +…+

    1

    99×100 =1-

    1

    2 +

    1

    2 -

    1

    3 +

    1

    3 -

    1

    4 +

    1

    4 -

    1

    5 +…+

    1

    99 -

    1

    100 =1-

    1

    100 =

    99

    100 ;

    1

    1×2 +

    1

    2×3 +

    1

    3×4 +

    1

    4×5 +…+

    1

    n×(n+1) =1-

    1

    2 +

    1

    2 -

    1

    3 +

    1

    3 -

    1

    4 +

    1

    4 -

    1

    5 +…+

    1

    n -

    1

    n+1 =1-

    1

    n+1 =

    n

    n+1 ;

    1

    1×3 =

    1

    2 (1-

    1

    3 ),

    1

    3×5 =

    1

    2 (

    1

    3 -

    1

    5 )…,

    1

    1×3 +

    1

    3×5 +

    1

    5×7 +…+

    1

    99×100 =

    1

    2 (1-

    1

    3 +

    1

    3 -

    1

    5 +

    1

    5 -

    1

    7 +…+

    1

    99 -

    1

    100 )=

    1

    2 ×

    99

    100 =

    99

    200 .

    故答案为:

    4

    5 ;

    99

    100 ;

    n

    n+1 ;

    99

    200 .