∵
1
1×2 =1-
1
2 ,
1
1×2 +
1
2×3 =1-
1
2 +
1
2 -
1
3 ,
∴
1
1×2 +
1
2×3 +
1
3×4 +
1
4×5 =1-
1
2 +
1
2 -
1
3 +
1
3 -
1
4 +
1
4 -
1
5 =1-
1
5 =
4
5 ;
1
1×2 +
1
2×3 +
1
3×4 +
1
4×5 +…+
1
99×100 =1-
1
2 +
1
2 -
1
3 +
1
3 -
1
4 +
1
4 -
1
5 +…+
1
99 -
1
100 =1-
1
100 =
99
100 ;
1
1×2 +
1
2×3 +
1
3×4 +
1
4×5 +…+
1
n×(n+1) =1-
1
2 +
1
2 -
1
3 +
1
3 -
1
4 +
1
4 -
1
5 +…+
1
n -
1
n+1 =1-
1
n+1 =
n
n+1 ;
∵
1
1×3 =
1
2 (1-
1
3 ),
1
3×5 =
1
2 (
1
3 -
1
5 )…,
∴
1
1×3 +
1
3×5 +
1
5×7 +…+
1
99×100 =
1
2 (1-
1
3 +
1
3 -
1
5 +
1
5 -
1
7 +…+
1
99 -
1
100 )=
1
2 ×
99
100 =
99
200 .
故答案为:
4
5 ;
99
100 ;
n
n+1 ;
99
200 .