两边同除以6^x,
1+2*2^x/3^x=(3/2)^x,
1+2*(2/3)^x=(2/3)^(-x),
设(2/3)^x=t,
1+2t=1/t,
2t^2+t-1=0,
(2t-1)(t+1)=0,
t=1/2,或t=-1(不合题意,舍去),
(2/3)^x=1/2,
两边取常用对数,
lg(2/3)^x=lg(1/2),
x(lg2-lg3)=-lg2,
∴x=lg2/(lg3-lg2).
两边同除以6^x,
1+2*2^x/3^x=(3/2)^x,
1+2*(2/3)^x=(2/3)^(-x),
设(2/3)^x=t,
1+2t=1/t,
2t^2+t-1=0,
(2t-1)(t+1)=0,
t=1/2,或t=-1(不合题意,舍去),
(2/3)^x=1/2,
两边取常用对数,
lg(2/3)^x=lg(1/2),
x(lg2-lg3)=-lg2,
∴x=lg2/(lg3-lg2).