已知四边形ABCD是空间四边形,E,F分别是边AB,AD的中点,F,G分别是边CB,CD上的点,且向量CF=2/3向量C

1个回答

  • 证明是梯形,只需证明这个四边形中,有两条边是平行的,而另两条边不平行(或者平行的两条边不相等)就可以了,当然这四个点都在一个平面内.

    本题中,E,H分别为AB、AD边的中点,在三角形ABD中,EH//BD,FG分别为BC、CD的三等分点,在三角形BCD中,FG//BD,所以可以得到EH//FG;同时根据平面的确定原则,两条不重合的平行线可以确定一个平面,所以可以得到EHFG四点在一个平面内;三角形ABD中,EH=1/2BD,FG=2/3BD;所以可以得到四边形EFGH是梯形.