设A、B两点坐标为(x1,y1)、(x2,y2),AB中点O'坐标为(x0,y0),则
x1+x2=2x0
y1+y2=2y0
(y1/x1)*(y2/x2)=-1,即y1y2=-x1x2
y1^2=2px1
y2^2=2px2
(y1y2)^2=4p^2x1x2=-4p^2y1y2
y1y2=-4p^2
y1^2+y2^2=2p(x1+x2)
(y1+y2)^2-2y1y2=2p(x1+x2)
4y0^2+8p^2=4px0
y0^2=px0-2p^2
所以中点轨迹方程为:y^2=px-2p^2
PS:是不是题目里还要求要p>0.