(1/a-b +1/b+a)÷ab/a+b
=[1/(a-b)+1/(b+a)]÷ab/(a+b)
=[(a+b)/(a²-b²)+(a-b)/(a²-b²)]÷ab/(a+b)
=[(a+b+a-b)/(a²-b²)]÷ab/(a+b)
=[2a/(a+b)(a-b)]×(a+b)/ab
=2/(ab-b²)
(1/a-b +1/b+a)÷ab/a+b
=[1/(a-b)+1/(b+a)]÷ab/(a+b)
=[(a+b)/(a²-b²)+(a-b)/(a²-b²)]÷ab/(a+b)
=[(a+b+a-b)/(a²-b²)]÷ab/(a+b)
=[2a/(a+b)(a-b)]×(a+b)/ab
=2/(ab-b²)