解题思路:(1)设x1,x2∈(-∞,0),且x1<x2,则有-x1>-x2>0,然后根据奇函数f(x)在[0,+∞)上为增函数,建立不等关系,化简即可得到f(x1)<f(x2),从而得到函数的单调性.
(2)分类讨论解不等式,即可得出结论.
(1)证明:设x1,x2∈(-∞,0),且x1<x2,则有-x1>-x2>0,
∵f(x)是[0,+∞)上的增函数∴f(-x1)>f(-x2)
又∵f(x)为R上的奇函数,∴-f(x1)>-f(x2),即f(x1)<f(x2).
故f(x)是(-∞,0)上的单调增函数;
(2)x>0时,f(x)<f(1),∴x<1,∴0<x<1;
x<0时,f(x)<f(-1),∴x<-1,∴x<-1,
∴不等式f(x)<0的解集为{x|0<x<1或x<-1}.
点评:
本题考点: 奇偶性与单调性的综合.
考点点评: 本题主要考查了函数的奇偶性,以及函数单调性的判断与证明,属于中档题.