解题思路:利用正弦函数的单调性、对称性及最值等性质对①②③④逐个判断即可.
∵f(x)=3sin(2x+[π/6]),
∴f(0)=[3/2]≠0,
∴其图象不关于原点成中心对称,故①错误;
由2x+[π/6]=kπ+[π/2](k∈Z)得:x=[kπ/2]+[π/6](k∈Z),
∴函数f(x)=3sin(2x+[π/6])的对称轴方程为:x=[kπ/2]+[π/6](k∈Z),
当k=0时,x=[π/6],
∴其图象关于直线x=[π/6]对称,即②正确;
又当2x+[π/6]=2kπ+[π/2](k∈Z),即x=kπ+[π/6]时,函数f(x)取到最大值3,故③正确;
由2kπ-[π/2]≤2x+[π/6]≤2kπ+[π/2](k∈Z),即kπ-[π/3]≤x≤kπ+[π/6](k∈Z)时,函数f(x)=3sin(2x+[π/6])单调递增,
∴当k=0时,函数的一个单调增区间是[-[π/3],[π/6]],故④函数的一个单调增区间是[-[π/4],[π/4]]错误.
综上所述,正确命题的序号为②③.
故答案为:②③.
点评:
本题考点: 命题的真假判断与应用.
考点点评: 不同考查命题的真假判断与应用,着重考查正弦函数的单调性、对称性及最值,属于中档题.