正方形ABCD中,EF分别为AB延长线上两点,BE=AB,BF=BD,DF交CE于G,求证CG=BC

1个回答

  • ∵ABCD是正方形,∴AB=BC=DC=AD、∠CBE=∠BAD=90°.

    ∵BE=AB、AB=BC,∴BE=BC,又∠CBE=90°,∴CE=√2AB=√2DC.

    ∵AB=AD、∠BAD=90°,∴BD=√2AB=√2DC,又BF=BD,∴BF=√2DC,

    ∴EF=BF-BE=√2DC-AB=√2DC-DC.

    ∵DC∥EF,∴△CDG∽△FEG,∴DC/EF=CG/EG,∴DC/(√2DC-DC)=CG/(CE-CG),

    ∴CG/(√2DC-CG)=1/(√2-1),∴CG/(√2DC)=1/√2,∴CG=DC=BC.