解题思路:(1)由AC是⊙O的直径,PA是⊙O的切线,根据切线的性质,即可得∠PAC=90°,又由PC=10,PA=6,利用勾股定理即可求得AC的值,继而求得⊙O的半径;
(2)由AC是⊙O的直径,PA是⊙O的切线,根据圆周角定理与切线的性质,即可得∠ABC=∠PAC=90°,又由同角的余角相等,可得∠BAC=∠P,然后在Rt△PAC中,求得cos∠P的值,即可得cos∠BAC的值.
(1)∵AC是⊙O的直径,PA是⊙O的切线,
∴CA⊥PA,
即∠PAC=90°,
∵PC=10,PA=6,
∴AC=
PC2−PA2=8,
∴OA=[1/2]AC=4,
∴⊙O的半径为4;
(2)∵AC是⊙O的直径,PA是⊙O的切线,
∴∠ABC=∠PAC=90°,
∴∠P+∠C=90°,∠BAC+∠C=90°,
∴∠BAC=∠P,
在Rt△PAC中,cos∠P=[PA/PC]=[6/10]=[3/5],
∴cos∠BAC=[3/5].
点评:
本题考点: 切线的性质;勾股定理;锐角三角函数的定义.
考点点评: 此题考查了切线的性质、圆周角定理、勾股定理以及三角函数的定义.此题难度适中,注意掌握数形结合思想与转化思想的应用.