解题思路:(1)由数列的递推公式求指定项,令n=2,3代入即可;
(2)由an=2an-1+2n+3及
b
n
=
a
n
+3
2
n
,只要验证bn-bn-1是个常数即可;
(3)根据(2)证明可以求得bn,进而求得an,从而求得sn.
(1)a2=2a1+2+3=1,a3=2a22+23+3=13
(2)bn+1−bn=
an+1+3
2n+1−
an+3
2n=
1
2n+1(an+1−2an−3)=
2n+1
2n+1=1.
∴数列{bn }是公差为1的等差数列.
(3)由(2)得bn=
an+3
2n=n−1,∴an=(n-1)•2n-3(n∈N*)
∴sn=0×21+1×22+…+(n-1)2n-3n
令Tn=0×21+1×22+…+(n-1)2n
则2Tn=0×22+1×23+…+(n-2)2n+(n-1)2n+1
两式相减得:-Tn=22+23+…+2n-(n-1)•2n+1
=
4(1−2n−1)
1−2−(n−1)2n+1=(2-n)•2n+1-4
∴Tn=(n-2)•2n+1+4
∴sn=(n-2)2n+1-3n+4.
点评:
本题考点: 数列的求和;等差关系的确定.
考点点评: 考查数列的基本运算,和等差数列的证明方法,错位相减法求和问题,很好,属中档题.