(2010•石景山区一模)数列an中,a1=-3,an=2an-1+2n+3(n≥2且n∈N*).

1个回答

  • 解题思路:(1)由数列的递推公式求指定项,令n=2,3代入即可;

    (2)由an=2an-1+2n+3及

    b

    n

    a

    n

    +3

    2

    n

    ,只要验证bn-bn-1是个常数即可;

    (3)根据(2)证明可以求得bn,进而求得an,从而求得sn

    (1)a2=2a1+2+3=1,a3=2a22+23+3=13

    (2)bn+1−bn=

    an+1+3

    2n+1−

    an+3

    2n=

    1

    2n+1(an+1−2an−3)=

    2n+1

    2n+1=1.

    ∴数列{bn }是公差为1的等差数列.

    (3)由(2)得bn=

    an+3

    2n=n−1,∴an=(n-1)•2n-3(n∈N*

    ∴sn=0×21+1×22+…+(n-1)2n-3n

    令Tn=0×21+1×22+…+(n-1)2n

    则2Tn=0×22+1×23+…+(n-2)2n+(n-1)2n+1

    两式相减得:-Tn=22+23+…+2n-(n-1)•2n+1

    =

    4(1−2n−1)

    1−2−(n−1)2n+1=(2-n)•2n+1-4

    ∴Tn=(n-2)•2n+1+4

    ∴sn=(n-2)2n+1-3n+4.

    点评:

    本题考点: 数列的求和;等差关系的确定.

    考点点评: 考查数列的基本运算,和等差数列的证明方法,错位相减法求和问题,很好,属中档题.