1.原式=∫(1-2x+x^2)/x^(1/3)dx
=∫x^(-1/3)dx-2∫x^(2/3)dx+∫x^(5/3)dx
=3/2x^(2/3)-6/5x^(5/3)+3/8x^(8/3)+C
2.原式=∫(3x^2+3-3)/(1+x^2)dx
=∫3dx-3∫dx/(1+x^2)
=3x-3arctanx+C
3.原式=∫(x^2+4x+16)dx
=x^3/3+2x^2+16x+C
1.原式=∫(1-2x+x^2)/x^(1/3)dx
=∫x^(-1/3)dx-2∫x^(2/3)dx+∫x^(5/3)dx
=3/2x^(2/3)-6/5x^(5/3)+3/8x^(8/3)+C
2.原式=∫(3x^2+3-3)/(1+x^2)dx
=∫3dx-3∫dx/(1+x^2)
=3x-3arctanx+C
3.原式=∫(x^2+4x+16)dx
=x^3/3+2x^2+16x+C