当加速度a较小时,小球与斜面一起运动,此时小球受重力、绳子拉力和斜面的支持力,绳子平行于斜面;当加速度a足够大时,小球将飞离斜面,此时小球仅受重力与绳子的拉力作用,绳子与水平方向的夹角未知,而题目要求出当斜面以10m/s 2的加速度向右做加速运动时,绳的拉力及斜面对小球的弹力,必须先求出小球离开斜面的临界加速度a 0,(此时小球所受斜面的支持力恰好为零)
小球的受力如图:
由牛顿第二定律得:F 合=mgcotθ=ma 0
解得:a 0=gcotθ=7.5m/s 2
因为:a=10m/s 2>a 0
所以小球一定离开斜面N=0,小球的受力如图所示:
则水平方向有牛顿第二定律得:Tcosα=ma
竖直方向有受力平衡得:Tsinα=mg
由以上两式整理得:T=
(ma ) 2 +(mg ) 2 =2.83N
N=0
答:绳的拉力为2.83N,斜面对小球的弹力为零.