证明:(Ⅰ)设0≤x 1<x 2≤1,则x 2-x 1∈(0,1)
∴f(x 2-x 1)>0
∴f(x 2)-f(x 1)=f[(x 2-x 1)+x 1]-f(x 1)=f(x 2-x 1)+f(x 1)-f(x 1)=f(x 2-x 1)>0
即f(x 2)>f(x 1)
故f(x)在[0,1]上是单调递增的
(Ⅱ)因f(x)在x∈[0,1]上是增函数,则f(x)≤f(1)=1⇒1-f(x)≥0,
当f(x)≤f(1)=1时,容易验证不等式成立;
当f(x)<1时,则
4 f 2 (x)-4(2-a)f(x)+5-4a≥0⇒a≤
4 f 2 (x)-8f(x)+5
4-4f(x) 对x∈[0,1]恒成立,
设 y=
4 f 2 (x)-8f(x)+5
4-4f(x) =1-f(x)+
1
4[1-f(x)] ≥1 ,从而则a≤1
综上,所求为a∈(-∞,1];
(Ⅲ)令S n=
1
2 2 +
2
2 3 +
3
2 4 +…+
n
2 n+1 ----------①,
则
1
2 S n =
1
2 3 +
2
2 4 +
3
2 5 +…+
n
2 n+2 --------------②,
由①-②得,
1
2 S n =
1
2 2 +
1
2 3 +
1
2 4 +…+
1
2 n+1 -
n
2 n+2 ,即,S n=
1
2 +
1
2 2 +
1
2 3 +…+
1
2 n -
n
2 n+1 = 1-
1
2 n -
n
2 n+1 <1
所以 f(
1
2 2 +
2
2 3 +…+
n
2 n+1 )<f(1)=1 .