已知定义域为[0,1]的函数f(x)同时满足:

1个回答

  • 证明:(Ⅰ)设0≤x 1<x 2≤1,则x 2-x 1∈(0,1)

    ∴f(x 2-x 1)>0

    ∴f(x 2)-f(x 1)=f[(x 2-x 1)+x 1]-f(x 1)=f(x 2-x 1)+f(x 1)-f(x 1)=f(x 2-x 1)>0

    即f(x 2)>f(x 1

    故f(x)在[0,1]上是单调递增的

    (Ⅱ)因f(x)在x∈[0,1]上是增函数,则f(x)≤f(1)=1⇒1-f(x)≥0,

    当f(x)≤f(1)=1时,容易验证不等式成立;

    当f(x)<1时,则

    4 f 2 (x)-4(2-a)f(x)+5-4a≥0⇒a≤

    4 f 2 (x)-8f(x)+5

    4-4f(x) 对x∈[0,1]恒成立,

    设 y=

    4 f 2 (x)-8f(x)+5

    4-4f(x) =1-f(x)+

    1

    4[1-f(x)] ≥1 ,从而则a≤1

    综上,所求为a∈(-∞,1];

    (Ⅲ)令S n=

    1

    2 2 +

    2

    2 3 +

    3

    2 4 +…+

    n

    2 n+1 ----------①,

    1

    2 S n =

    1

    2 3 +

    2

    2 4 +

    3

    2 5 +…+

    n

    2 n+2 --------------②,

    由①-②得,

    1

    2 S n =

    1

    2 2 +

    1

    2 3 +

    1

    2 4 +…+

    1

    2 n+1 -

    n

    2 n+2 ,即,S n=

    1

    2 +

    1

    2 2 +

    1

    2 3 +…+

    1

    2 n -

    n

    2 n+1 = 1-

    1

    2 n -

    n

    2 n+1 <1

    所以 f(

    1

    2 2 +

    2

    2 3 +…+

    n

    2 n+1 )<f(1)=1 .