f(x) = ln[x/(1+x)] = ln[(1+x-1)/(2+x-1)] = ln(1+x-1) - ln(2+x-1)
= ln(1+x-1) - ln2 - ln{1+(x-1)/2] = g(x) - ln2 -h(x)
g'(x) = 1/(1+x-1) = ∑(-1)^n(x-1)^n,
g(x)= ∫dt/t = ∑(-1)^n(x-1)^(n+1)/(n+1),
h'(x) = 1/(1+x-1) = ∑(-1)^n(x-1)^n/2^n,
h(x)= -ln2+∫dt/(1+t) = -ln2+∑(-1)^n(x-1)^(n+1)/[(n+1)2^n],
得 f(x)=∑(-1)^n(x-1)^(n+1)/(n+1) - ∑(-1)^n(x-1)^(n+1)/[(n+1)2^n]
= ∑(-1)^n(1+1/2^n)(x-1)^(n+1)/(n+1).
收敛域 -1