1.题目有问题,应该是求证p+q2,则由上式q^2-p*q+p^2=0,得p^2+q^2>=2p*q,
因此2(p^2+q^2)>=p^2+2p*q+q^2=(p+q)^2,
故p^2+q^2>=[(p+q)^2]/2,
而且 (p+q)^2=p^2+2p*q+q^2>=4p*q,
p*q=[(p+q)^2]/2-[(p+q)^2]/4=[(p+q)^2]/4>2^2/4=1,
这和由假设推出的q^2-p*q+p^23/14显然得证
1.题目有问题,应该是求证p+q2,则由上式q^2-p*q+p^2=0,得p^2+q^2>=2p*q,
因此2(p^2+q^2)>=p^2+2p*q+q^2=(p+q)^2,
故p^2+q^2>=[(p+q)^2]/2,
而且 (p+q)^2=p^2+2p*q+q^2>=4p*q,
p*q=[(p+q)^2]/2-[(p+q)^2]/4=[(p+q)^2]/4>2^2/4=1,
这和由假设推出的q^2-p*q+p^23/14显然得证