解题思路:(1)要使切割后的表面积之和最大,沿平行16×8面切割,这样表面积就会增加两个原来长方体的最大的面;
(2)要使割后的表面积之和最小,沿平行6×8面切割,这样表面积就会增加两个原来长方体的最小的面,由此把原来长方体的表面积加上增加的面积就是切割后的长方体表面积之和.
原长方体的表面积:(16×6+16×8+6×8)×2,
=272×2,
=544(平方厘米),
(1)分割成两个一样的长方体后表面积最大是:
544+16×8×2,
=544+256,
=800(平方厘米),
(2)表面积最小是:544+6×8×2,
=544+96,
=640(平方厘米),
答:这两个相同长方体的表面积之和最大是800平方厘米,最小是640平方厘米.
点评:
本题考点: 简单的立方体切拼问题;长方体和正方体的表面积.
考点点评: 根据长方体切割成两个一样的长方体的表面积中增加的面的情况,得出表面积最大和最小的切割方法是解决本题的关键.