1)
{an}为等差数列,d≠0
a1=1,a3是a1,a9的等比中项
∴(1+2d)^2=1+8d
∴4d^2-4d=0
∵d≠0 ∴d=1
∴an=n
2)
不等式1/a1a2+1/a2a3+...+1/anan+1≥T
令Sn=1/a1a2+1/a2a3+...+1/anan+1
Sn=1/(1*2)+1/(2*3)+.+1/[n(n+1)]
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1-1/(n+1)
∵1/[n(n+1)]>0
∴Sn递增,那么Sn≥S1=1/2
∵Sn≥T恒成立
∴Sn的最小值≥T
∴T≤1/2