1、
S2-S1=(1+2√2)²-(1+√2)²
=1+4√2+8-1-2√2-2
=2√2+6
=2(√2+3)
S3-S2=(1+3√2)²-(1+2√2)²
=1+6√2+18-1-4√2-8
=2√2+10
=2(√2+5)
S1-S3==(1+4√2)²-(1+3√2)²
=1+8√2+32-1-6√2-18
=2√2+14
=2(√2+7)
2、Sn+1-Sn=(1+(n+1)√2)²-(1+n√2)²
=1+2(n+1)√2+2(n+1)²-1-2n√2-2n²
=2√2+2(2n+1)
=2(√2+2n+1)