A,B是椭圆x^2/a^2+y^2/b^2=1上两点,且OA垂直OB,求证1/OA^2+1/OB^2为定值

2个回答

  • 将椭圆方程改写为:x=acosθ,y=bsinθ,其中θ为OP(x,y)与Ox轴的夹角

    设A(x1,y1)对应的是θ1,B(x2,y2)对应的是θ2

    根据题意,OA⊥OB,则|θ2-θ1|=π/2

    不失一般性,可另θ2=θ1+π/2

    则cosθ2=-sinθ1,sinθ2=cosθ1

    x1 = acosθ1,y1 = bsinθ1;

    x2 = acosθ2 = -asinθ1,y2 = bsinθ2 = bcosθ1

    |OA|^2 = x1^2 + y1^2 = a^2cos^2θ1 + b^2sin^2θ1

    |OB|^2 = x2^2 + y2^2 = a^2sin^2θ1 + b^2cos^2θ1

    |OA|^2+|OB|^2 = (a^2+b^2)*(cos^2θ1+sin^2θ1) = a^2+b^2

    |OA|^2*|OB|^2 = (a^2cos^2θ1 + b^2sin^2θ1)*(a^2sin^2θ1 + b^2cos^2θ1)

    = (a^4+b^4)*sin^2θ1cos^2θ1 + a^2b^2*(cos^4θ1+sin^4θ1)

    = (a^4+b^4-2a^2b^2)*sin^2θ1cos^2θ1 + a^2b^2*(cos^4θ1+sin^4θ1+2sin^2θ1cos^2θ1)

    = (a^2-b^2)^2*sin^2θ1cos^2θ1 + a^2b^2*(cos^2θ1+sin^2θ1)^2

    = (a^2-b^2)^2*sin^2θ1cos^2θ1 + a^2b^2

    = (ab)^2 + (c*sinθ1cosθ1)^2

    1/|OA|^2 + 1/|OB|^2 = (|OA|^2 + |OB|^2)/(|OA|^2*|OB|^2)

    = (a^2+b^2)/[(ab)^2+(c*sinθ1cosθ1)^2]

    似乎不为常数嘛