答:
f(x)=2sin(x/2+π/3)+1
最大值为2+1=3,最小值为-2+1=-1
F(x)=f(x)+lnk=2sin(x/2+π/3)+1+lnk=0在[-π/6,π]上有且仅有2个零点
所以:-(1+lnk)=2sin(x/2+π/3)
因为:-π/6
答:
f(x)=2sin(x/2+π/3)+1
最大值为2+1=3,最小值为-2+1=-1
F(x)=f(x)+lnk=2sin(x/2+π/3)+1+lnk=0在[-π/6,π]上有且仅有2个零点
所以:-(1+lnk)=2sin(x/2+π/3)
因为:-π/6