一阶的可用特征方程法:
先求du/dt+a du/dx=0的特征线:
dt/1=dx/a
得:x-at=C1
得:u=f(x-at)
再求du/dt+adu/dx=c的解
设u*=pt+qx+r,则代入原方程有:p+aq=c,得:p=c-aq
即u*=(c-aq)t+qx+r=q(x-at)+ct+r,
将q(x-at)合并到f(x-at)里,有:
所以通解为u=f(x-at)+ct+r ,这里f为任意一阶可微函数,r为任意常数.
一阶的可用特征方程法:
先求du/dt+a du/dx=0的特征线:
dt/1=dx/a
得:x-at=C1
得:u=f(x-at)
再求du/dt+adu/dx=c的解
设u*=pt+qx+r,则代入原方程有:p+aq=c,得:p=c-aq
即u*=(c-aq)t+qx+r=q(x-at)+ct+r,
将q(x-at)合并到f(x-at)里,有:
所以通解为u=f(x-at)+ct+r ,这里f为任意一阶可微函数,r为任意常数.