(2014•贵阳模拟)已知定义在实数集R上的偶函数f(x)的最小值为3,且当x≥0时,f(x)=3ex+a(a为常数).

1个回答

  • 解题思路:(1)由y=ex是增函数,得知f(x)也是(0,+∞)上增函数,再由f(x)为偶函数,则f(x)在(-∞,0)上是减函数,从而当x=0时有最小值求得a值,然后利用偶函数求对称区间上的解析式即可.

    (2)先假设当x∈[1,m]时,存在t∈R,有f(x+t)≤3ex,则有f(1+t)≤3e,下面要选择解析式,所以要分1+t≥0时和1+t≤0时两种情况得t的范围,同样地,有f(m+t)≤3em及m≥2,得em+t≤em转化为et

    em
    em

    由t的存在性可知,上述不等式在[-2,0]上必有解,只要求得et在[-2,0]上的最小值可即可.

    (1)∵y=ex是增函数,∴当x≥0时,f(x)为增函数,又f(x)为偶函数,∴f(x)min=f(0)=3+a,∴3+a=3.∴a=0当x<0时,-x>0,∴f(x)=f(-x)=3e-x综上,f(x)=3ex,x≥03e−x,x<0,(2)∵当x∈[1,m]时,...

    点评:

    本题考点: 函数奇偶性的性质.

    考点点评: 本题主要考查利用奇偶性来求对称区间上的解析式和应用单调性来解决恒成立问题.这类问题综合性较强,涉及的知识和方法较多,思路比较繁杂,解题时必须严格按照逻辑步骤,层层解决.