这不是......高中的吗?我还真不会。我虽然数学不错,但只有初一呀
已知各项均为正数的数列{an}满足[a右下(n+1)] ^2=2an^2+an*a(右下(n+1)),且a2+a4=2a
4个回答
相关问题
-
各项均为正数的数列{an},满足a1=1,a^2右下标(n+1)-a^2右下标n=2,n∈N).求:
-
已知各项均为正数的数列{an}满足a1=3,[2a(n+1)-an]/[2an-a(n+1)]=an*a(n+1).
-
已知各项均为正数的数列{an}满足a0=1/2,an=a(n-1)+(1/n^2)*(a(n-1))^2.求证an小于n
-
已知各项均为正数的数列{an}满足a0=1/2,an=a(n-1)+(1/n^2)*(a(n-1))^2其中n=1,2,
-
已知各项为正数的数列{an}满足a1+a2+a3+……an=1,求证a1^2+a2^2+……an^2>=1/n(n>=2
-
已知各项均为正数的数列{an}满足:a1+2a2+3a3+…+nann=(a1+1)an3(n∈N*)
-
己知各项均为正数的数列{an}满足an+12-an+1an-2an2=0(n∈N*),且a3+2是a2,a4的等差中项.
-
已知数列{an}的各项均为正整数,且满足an+1=(an)^2-2*n(an)+2(n属于正整数),a5=11
-
数学数列难题已知各项均为正的数列{an},满足(an+1)∧2=2(an)∧2+an×an+1,且a2+a4=2a3+4
-
已知数列{an}的各项均为正数,且满足a1^2+a2^2+a3^2+…+an^2=2^n(n∈N).(1)求a1、a2、