(1)证明:
①∵四边形ABCD是菱形
∴AB=BC,∠ACB=∠ACF
又∵∠B=60°
∴△ABC是等边三角形
∴AB=AC,∠ACB=60°
∴∠B=∠ACF
∵BE=CF
∴△ABE≌△ACF;
②由△ABE≌△ACF
∴AE=AF,∠BAE=∠CAF
∵∠BAE+∠CAE=60°
∴∠CAF+∠CAE=60°,即∠EAF=60°
∴△AEF是等边三角形.
(2)答:存在
证明:在CD延长线上取点F,使CF=BE
与(1)①同理可证△ABE≌△ACF
∴AE=AF,∠BAE=∠CAF(1分)
∴∠CAF-∠CAE=∠BAE-∠CAE
∴∠EAF=∠BAC=60°
∴△AEF是等边三角形.
注:若在CD延长线上取点F,使CE=DF亦可.