f(x)=∫f'(x)dx+C1=∫(a^x)dx+C1=∫[1/ln(a)]d(a^x)+C1=(a^x)/ln(a)+C1
F(x)=∫f(x)dx+C2=∫[(a^x)/ln(a)+C1]dx+C2=[1/ln(a)]∫(a^x)dx+C1x+C2=(a^x)/ln^2(a)+C1x+C2
就是分两步积分,先求f(x),再求f(x)的原函数F(x)
f(x)=∫f'(x)dx+C1=∫(a^x)dx+C1=∫[1/ln(a)]d(a^x)+C1=(a^x)/ln(a)+C1
F(x)=∫f(x)dx+C2=∫[(a^x)/ln(a)+C1]dx+C2=[1/ln(a)]∫(a^x)dx+C1x+C2=(a^x)/ln^2(a)+C1x+C2
就是分两步积分,先求f(x),再求f(x)的原函数F(x)