(1)由AB=AC,∴∠B=∠C,
又PR⊥BC,∴∠R+∠C=90°,
∠BQP+∠B=90°,
∴∠R=∠BQP,
∵∠BQP=∠AQR,
∴∠R=∠AQR,
得AR=AQ.
(2)当P在CB延长线上时,
Q在AB延长线上,R在CA延长线上,
∵RQ⊥CP,
有∠C+∠R=90°,
∠ABC=∠PBQ,
而∠PBQ+∠Q=90°,
∵∠C=∠ABC=∠PBQ,
∴∠R=∠Q不变,
即AR=AQ不变.
(1)由AB=AC,∴∠B=∠C,
又PR⊥BC,∴∠R+∠C=90°,
∠BQP+∠B=90°,
∴∠R=∠BQP,
∵∠BQP=∠AQR,
∴∠R=∠AQR,
得AR=AQ.
(2)当P在CB延长线上时,
Q在AB延长线上,R在CA延长线上,
∵RQ⊥CP,
有∠C+∠R=90°,
∠ABC=∠PBQ,
而∠PBQ+∠Q=90°,
∵∠C=∠ABC=∠PBQ,
∴∠R=∠Q不变,
即AR=AQ不变.