本题若想利用向量的方法解答,首先要先建立适当的直角坐标系,而所给的图形没有现成的垂直关系,但考虑到正三角形自身的对称性,不妨取AC中点O,连结OS、OB.这样就可以建立如图所示空间直角坐标系O-xyz.要想证明AC⊥SB,只须证明 • =0,由已知不难推得证明:
(Ⅰ)A(2,0,0),B(0,2 ,0),C(-2,0,0),S(0,0,2倍根号2),M(1,根号3,0),N(0,根号3 根号2,).∴向量AC =(-4,0,0),向量SB =(0,2 ,2 ),则 向量AC• 向量SB=(-4,0,0)•(0,2 ,2 )=0由此命题得证证明:
(Ⅱ)由(Ⅰ)得 向量CM=(3,根号3 ,0),向量MN=(-1,0,根号2).设向量n =(x,y,z)为平面CMN的一个法向量,有:向量CM•向量n =3x+根号3 y=0,向量MN• 向量n=-x+根号2 z=0,取z=1,则x= 根号2,y=-根号6 ,∴向量n =(根号2 ,-根号6 ,1),又 向量OS=(0,0,2根号2 )为平面ABC的一个法向量,∴cos( 向量n,向量OS )= 三分之一 .∴二面角N-CM-B的大小为arccos 三分之一
(Ⅲ)由(Ⅰ)(Ⅱ)得向量MB=(-1,√3,0).向量n =(√2 ,-√6 ,1)为平面CMN的一个法向量,
∴点B到平面CMN的距离d=|向量MB*向量n|/|向量n|=4√2/3